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The equation of the laminar boundary layer is used t0 analyze the
mixing of two plane oncoming (or parallel) streams of inhomogeneous
compressible gases.

The problem of the mixing of two homogeneous par-
allel or oncoming streams of a compressible gas or of
a viscous incompressible liquid, under conditions of
laminar and turbulent flow, have been investigated in
sufficient detail [1-3]. However, in practice we have
to deal in the main with mixing processes of oncoming
or parallel inhomogeneous streams, as well as with
two-phase systems. Turbulent mixing of coaxial
streams of the same temperature was considered in
[4,5]. Mixing processes in parallel and oncoming
streams of inhomogeneous compressible gases are of
considerable practical importance in various techno-
logical installations (furnaces, plasma-chemical re~
actors, etc.).

Below we present the results of a theoretical in-
vestigation of transport processes in the mixing of two
plane oncoming streams of inhomogeneous compressible
gases. We assumethe mixing to be a result of molecular
diffusion in the boundary layer (the mixing zone) at the
interface of the streams, and that the gases being
mixed do not chemically interact. All assumptions from
boundary-layer theory are applicable, and, further-
more, Pr # 1 = const, S¢c # 1= const, and Pr # Sc.

If thermal diffusion is neglected, the system of dif-
ferential equations for the plane stationary motion of
inhomogeneous compressible gases in the laminar
boundary layer (the mixing zone) of two plane streams,
after transformation into a dimensionless form nor-
malized with respect to parameters of the unperturbed
flow in the region y > 0, will be of the form

a(apxu) + a(gyv) -0, 1)
oo 2] (£]) o
ph=1 p=~" (5)

with boundary conditions in the region x > 0 (mixing of
streams begins at x = 0)
C,=1for y=+ o 6)

’

u=1; h=1
u=m, h=~h,; C,=m, for y=—

where

In the case of parallel streams velocity u, is positive,
while for oncoming streams it is negative; u;isalways
greater than 0 {my = 0 relates to the problem of the
stream boundary).

For the time being, let us assume a linear depen-
dence of the viscosity coefficient on enthalpy; we have
n=1, and 4 = h (we must, however, bear in mind that
this is valid in the region of comparatively low tem-
peratures); we use the Dorodnitsyn variables § = x;

y
M= ‘ pdy for the transformation of Eqgs. (1)—(4). Let

0
us further assume that for Pr = const and Sc = const
the longitudinal velocity component, the enthalpy, and
the concentration are functions of only one variable

uE =g @)
RE M) =h(; C.G& W =CQ): t=n2VE;

thus we finally obtain the system of independent ordi-
nary differential equations

q’m + Q(P(P” - 0, (7)
K + 2Proh’ + % (k —1)M} (Pr—1) (¢")2 = 0, (8)
Ci+9cCig=0 (9

with boundary conditions

¢=Lh=LC=1fori=+o | (10)
¢ =m; h=hy; Ci=m, for{=—o |

Equation (7) with its related boundary conditions is
analogous to the equation of the dynamic problem in-
volved in the mixing of homogeneous compressible gas
streams and its boundary conditions—whose solution
is given in {2]—and the results are valid in this case
as well. .

The solution of the energy equation (8) will be ob~
tained by the method of parameter variation.

Using the substitution from Eq. (7)

"

P
29

- [

—on v —m

Q=

» 1t

—In 9;—%); , (11)
P

taking the value of the function ¢"(¢) from [3], and in-
troducing the notation
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Fig. 1. Profiles of total enthalpy in the mixing zone of
two inhomogeneous streams at Pr = 1: 1) hy, = 0;
2) 0.3; 3) 0.5. '

R{— o, x)= integral in (12) and (13). As a result we obtain

o 4 r

= 7 Pr o o 2 £ on? ——Prd dt. 12 14 ) o
3 S Iy (@) _i fo” @r1e" (N dtdt (12) f .
R{— o, §) = B . £

- . = Al §c2exp[—~(2-Pr)c”1dc=

= [ @ | " Qe @rTdtde, (13) )
?;i i:nally obtain the general solution of Eg. {13} inthe = 2{2{:;’%}; { (z_lfpﬁr)‘ =z 2 exp{—(2—Pr){¥]—
. V= .
——t T erf((2—Pr)¥2, ]} 186)

h= hm—é~ (1— k) (14 erf LV PR + @—pyrr 1 E—F) C‘} (

) \ Then, in accordance with [6],
g (k=) M Pr—1) [3 (1 +erfL VPO x

] R{— o, w)=
X R(—®, ®)—R(~— oo, c)] . (14) _ (I—m,} 1 (9 D=2
: 7 I/rp—r(2_—pr)3/2 [JT' +' (2 Pl') }v (17)
Relationship (14) is considerably simplified for Pr = 1. Ri—om, §) = {1—m,)?
We then have ’ x (2— Pr)
1 V= )
h=h — {I— k) (1 ). 15 . S — 12 —
mot (1= o) (1) (15) x| g | ewi—epiat

When Pr # 1 = const it is necessary to integrate func- 3 Ve
tions R{~w, ©} and R{—=, £}. Using the value of the —32 S Lexp[—203dE — “‘“—n‘:—;z‘ X
function ¢"(¢), we integrate the integrand of the second A (2—Pn
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Fig. 2. Profiles of concentration Ci in the mixing zone

of two inhomogeneous streams as functions of the gen-

eralized parameter £ =7n/2VZ : 1) Se =0.5; 2) 1.0;

3) 2.0 {for mg =0) 4) Sc =0.5; 5) 1.0; 6) 2.0) for m, =
=0.5).
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x j erf [(2 —Pr)'/%, Z]exp[—2Pr]dZ. (18)

-0

Let us now consider the diffusion problem. From
the solution of Eq. (9) with boundary conditions (10)
and substitution (11) taken into account, after double
integration we obtain a solution in the form

Ci(©) = [m, [ (@) dL +
;
¢ Sc c S
+ [ eag]] [ @*dr] (19)
or, substituting the expression for the function ¢"(¢),
after transformation, we obtain

G = L W+ )~ —DeTyS (20)
ForSc=1
€0 = — I(m+ ) — (m, —D exi . (21)

The nature of the gas motion in the mixing zone is
analyzed in detail in [1-3].

We now consider the enthalpy and concentration
distribution in the mixing region of two oncoming (or
parallel) streams of inhomogeneous compressible gases
on the basis of obtained results (14), (15), (20), and
(21). The results of calculating the dependence of the
profile of the total enthalpy honthe generalized param-
eter ¢ = 5/2Vt for various values of hy, and Pr = 11is
shown in Fig.- 1. The effective width of the mixing zone
obviously increases with an increasing parameter hyy,.
The dependence of concentration in the mixing region
on this parameter for various values of Sc and m¢ is
shown in Fig. 2. The nature of this dependence indi-
cates that the effectivethickness of the diffusionbound-
ary layer increases with decreasing number Sg, and
vice versa. The effect of parameter m¢ on the varia-
tion of the effective width of the mixing zone is, how-
ever, more pronounced, particularly intheregion¢ < 0.

The final solution of this problem and the feasibility
of practical calculations of enthalpy and concentration
distribution in the mixing zone of two oncoming streams,
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as well as the determination of the effect of the stream
parameters on the nature of the distribution, necessi-
tate the transition from the &, n coordinates to the

physical plane coordinates x, y. As is usual in heat
problems, this is carried out with the formulas

y yh
‘é:x;q:j‘-g_dy:j‘—ldy. (22)
§ P b h

It follows from (22) that the generalized parameter
£ =7n/2Vx is related to coordinates %, y by the formula

___y
_1 mj’ﬁ_
g~21/w - dy. (23)
[

The specific form of (23) depends on the enthalpy dis-
tribution. Differentiating with respect to y, we obtain

ﬁ=_l‘ﬁ1—a hy
=2V mx RO 24)

/2

from which the relationship between ¢ and y/x"/“ isde-
termined by the following integral equation
4
y 1 By
2 V~x_ T hy Uz Py .S‘ 4L (25)
]

Since the mass concentration of the i-th component
is Cij = pi/p, the transformation formula for y in the
case of the diffusion problem will be

¥ .
E 1oy y. (286)
C,
11

After transformations similar to (23) and (24), we ob-
tain

y P
o=V ue fcmdc (21)

Certain results of calculations of the dependence of
enthalpy h on the dimensionless coordinate y{uyp;/ux) 12
for Pr(Sc) = 1, and various h,;(me) are presented in
Fig. 3. As in the case of dependence h = fl¢) (see Fig.
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T

Fig. 3. The dependence of h(C;) on the dimensionless
coordinate y(u;py/jux)? for Pr(Sc) = 1: 1) hyy(mg) = 0
2) 0.3; 3) 0.5; 4) 1.0.
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Fig. 4. The dependence of C; on the dimensionless co-
ordinate y(u;py/iix) 1/2 for me = 0.5: 1) Sc =0.5; 2) 1.0;
3) 2.0.

1), the width of the mixing zone noticeably decreases
with decreasing hy,, which may be explained by

the convergence of enthalpies h; and hj of the streams
as hy, — 0. In this case the equalization of the enthal-
pies, under otherwise equal conditions, occurs much
faster, and the mixing zone is smaller. The effect of Sc
on function Cj = f(y(uspy/ex)¥? is shown in Fig. 4 for
the parameter me = 0.5. Clearly, the variation of Sc
within the limits of 0.5—2.0 results in lesser variation
of the mixing zone dimensions than the variation of m¢
from 0 to 1.0.

NOTATION

x and y are, respectively, the coordinates alongand
normal to the stream axis; u and v are the velocity
components along the x- and y-axes, respectively; p
is the gas density; p is the dynamic viscosity coeffi-
cient; p is the pressure; h is the enthalpy; k is the
ratio of specific heats at constant pressure and con-
stant volume; Cj and mj are, respectively, the con-
centration by weight, and the molecular weight of the
i-th component; M; is the Mach number; and Pr =

= uep/A, and Sc = u/pDj are, respectively, the Prandtl
and the Schmidt numbers.

REFERENCES

1. L. A. Vulis and V. P. Kashkarov, Teploenerge-
tika, no. 2, 1956.

2. V. P. Kashkarov, collection: Proceedings of the
Conference on Applied Gasdynamics [in Russian],
AN KazSSR, Alma-Ata, 1959.

3. L. A. Vulis and V. P Kashkarov, Theory of
Streams of Viscous Fluids [in Russian], Izd. Nauka,
Moscow, 1965.

4. L. J. Alpinieri, ATIAA Journal, 2, no. 9, 1964.

5. P. A. Libby, ARS Journal, 32, no. 3, 1962.

6. I. M. Ryzhik and I. S. Gradshtein, Tables of
Integrals, Sums, Series, and Products [in Russian],
4~th ed., 1962.

24 March 1967 Institute of Heat and Mass

Transfer AS BSSR, Minsk



